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A B S T R A C T   

Alzheimer’s disease (AD) is a degenerative disorder that attacks nerve cells in the brain. AD leads to memory loss 
and cognitive & intellectual impairments that can influence social activities and decision-making. The most 
common type of human genetic variation is single nucleotide polymorphisms (SNPs). SNPs are beneficial markers 
of complex gene-disease. Many common and serious diseases, such as AD, have associated SNPs. Detection of 
SNP biomarkers linked with AD could help in the early prediction and diagnosis of this disease. The main 
objective of this paper is to predict and diagnose AD based on SNPs biomarkers with high classification accuracy 
in the early stages. One of the most concerning problems is the high number of features. Thus, the paper proposes 
a comprehensive framework for early AD detection and detecting the most significant genes based on SNPs 
analysis. Usage of machine learning (ML) techniques to identify new biomarkers of AD is also suggested. In the 
proposed system, two feature selection techniques are separately checked: the information gain filter and Boruta 
wrapper. The two feature selection techniques were used to select the most significant genes related to AD in this 
system. Filter methods measure the relevance of features by their correlation with dependent variables, while 
wrapper methods measure the usefulness of a subset of features by training a model on it. Gradient boosting tree 
(GBT) has been applied on all AD genetic data of neuroimaging initiative phase 1 (ADNI-1) and Whole-Genome 
Sequencing (WGS) datasets by using two feature selection techniques. In the whole-genome approach ADNI-1, 
results revealed that the GBT learning algorithm scored an overall accuracy of 99.06% in the case of using 
Boruta feature selection. Using information gain feature selection, the proposed system achieved an average 
accuracy of 94.87%. The results show that the proposed system is preferable for the early detection of AD. Also, 
the results revealed that the Boruta wrapper feature selection is superior to the information gain filter technique.   

1. Introduction 

Alzheimer’s disease (AD) is a sort of dementia and is regarded as the 
most common type [1]. AD is a brain disorder that leads to memory loss, 
cognitive and intellectual impairments, and the ability to influence so-
cial activities and decision-making. One of the critical studies is iden-
tifying complex diseases related to genetic variants associated with the 
human genome. Genome Wide Association Studies (GW-AS) aim to 
identify genetic variants, especially complex diseases related to single 
nucleotide polymorphisms (SNPs). SNPs are the most common type of 
genetic variation among people. The disease occurs when one of the 
nucleotides of Adenine (A), Thymine (T), Cytosine (C), or Guanine (G) 
differ in their DNA sequence. The SNPs are the primary goal of genetic 
association studies to determine the most associated SNPs with common 
and complex diseases [2] (see Table 1). 

AD shows several features for clinical and pathological symptoms 
that lead to disease division into three main stages: early (mild), inter-
mediate (moderate), and late (severe). It is greatly beneficial to diagnose 
the disease in its early stages due to several factors: (a) maximizing the 
benefit of innovating new treatment strategies aimed at changing the 
impact of the disease in its early stage, (b) maintaining patients’ daily 
functions as much as possible by slowing the effect of worsening disease 
symptoms, and (c) providing long-term care and medical costs for both 
patients and governments. Nevertheless, diagnosing the disease in its 
early stages is regarded as a hard challenge in this field of research due 
to several reasons involving the late appearance of pathological features 
related to the disease. These features generate in the body for 10–15 
years before becoming visible. It means that the clinical diagnosis of the 
disease is performed 10–15 years post contraction of the disease [3]. 

Symptoms appear at the age of 65, and the spread of disease with age 
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increases sharply. Besides, AD is considered the most common kind of 
dementia in the onset of genetic disease factors. Although it is not the 
primary cause of the disease, a specific gene can play an important role. 
However, the symptoms can increase due to these factors [4,5]. Other 
factors affecting the disease are smoking and alcohol. Complete loss of 
memory, impairments of movements, misplacing things, verbal 
communication difficulties, and abnormal mood swings are defining 
symptoms of the disease. If it is not diagnosed initially, the disease’s 
severity increases, as shown in Fig. 1 [6]. 

Consequently, diagnosis and treatment of such disease could be 
made in early stages and with higher accuracy for detection. So far, the 
most critical risk factor is Apolipoprotein E (APOE) gene that is 
confirmed or listed in the AlzGene database. For genetic studies, ma-
chine learning (ML) techniques have been applied to explore the genetic 

variants that have the most association with complex diseases. The ML 
classifier was utilized to classify patients into AD, mild cognitive 
impairment (MCI), and control subjects to discover new genetic bio-
markers for AD progression. 

Despite the success of standard artificial intelligence (AI) techniques 
for gene expression data analyses, it has become apparent that it is 
challenging to analyze large-scale data using the only one-standard 
smart approach. If a conventional classifier is applied to gene expres-
sion for disease diagnosis to classify a sample based on all the variables, 
low accuracy would be expected. Microarray data is a well-known 
phenomenon that produces many features and a relatively small num-
ber of samples known in ML as the curse of the dimensionality problem. 
A small number of selection techniques of the informational features 
became essential to reduce computational costs, aid in identifying a 
small subset of genes that are biologically relevant to different diseases, 
and obtain the required prediction accuracy [7]. In general, defining a 
feature aims to remove inconvenient and duplicate features, thus mak-
ing the classifier work better as a diagnostic model. With the increasing 
availability of more and different types of omics data, ML methods have 
become more frequent. One of the challenges for ML approaches is 
predicting genomic features, especially regulatory regions prediction, as 
they are difficult to predict by applying contemporary methods. 
Accordingly, ML has been applied to predict the sequence properties of 
proteins associated with DNA and RNA, enhancers, and other regulatory 
regions [8–10]. 

SNPs work as pointers in the association and linkage studies to 
identify the genome’s part in a particular disease [11,12]. Polymorphs 
found in the same coding and organizing regions may be another 
contributor to diseases. A non-synonymous SNP holds great interest for 
researchers because they cause amino acid substitution. A vast number 
of variations in amino acids lead to genetic diseases. SNPs may have 
critical biological effects that have been shown in several studies, such 
as being related to complex diseases. SNP is a sequence variation of DNA 
from a single nucleotide change in the genome, and it is considered the 
most common genetic variation [13]. So, this paper presented a 
comprehensive framework for early diagnosis of AD based on SNPs 
analysis to improve the accuracy and detect the most significant genes or 
SNPs. Two methods were used for feature selection: Boruta and infor-
mation gain (IG). The gradient boosting tree (GBT) was used to classify 
normal, MCI, and AD. Besides, it detected most SNPs associated with the 
disease. In order to implement these ML algorithms, the appropriate 
preprocessing steps must be determined in advance. Classification 
studies that use ML generally need more essential steps: feature 
extraction, feature selection, dimensionality reduction, and 
feature-based classification algorithm selection. Specialized knowledge 
is required for these procedures and multiple stages of improvement. 
Reproduction of these methods is an important issue. 

The main contributions of our work can summarize in the following 
points:  

● The data were preprocessed to enhance their quality, which 
increased the performance of the diagnosis process. First, the outliers 
were handled by substituting their values with the median. Second, 
the missing data were handled by using the median. Third, the at-
tributes were normalized to provide a unique scale for all used fea-
tures. Finally, phenotypic information processing is defined for NC, 
MCI, and AD.  

● Two feature selection techniques were used: Boruta and IG feature 
selection, to get the most significant AD features provided by the 
experimental results. The results revealed that the Boruta feature 
selection achieved the highest performance in diagnoses.  

● Our work’s main concern or novelty is detecting the disease in its 
early stages by identifying the most significant genes and SNPs that 
cause the disease. Seven candidate genes were found, which are CLU, 
ABCA 7, APOE, BINI, CRI, CD2AP, and CD33. They are the most 
highly associated genes with AD, identified as the most significant 

Table 1 
An overview of complex brain diseases using different ML methods.  

Authors Disease Methods Results Problem 

Michael 
et al. [18] 

AD DM methods The results 
described that 
RF and MDR are 
powerful 
methods than 
existing 
methods for 
detecting 
genetic 
interactions. 

Their work need 
adding other 
modalities may 
improve the 
prediction 
accuracy. 

Abd El 
Hamid 
et al. [19] 

AD SVM Results shown 
that RBF kernel 
is used with 
SVM trained 
model has a 
better linked 
with AD and 
perform good 
accuracy of 
76.70%. 

Choose different 
genes based on 
selection methods 
are needed to 
investgate more 
higher genes that 
may aid in 
discover new 
biomarkers of 
disease using 
other ML 
algorithms. 

Spencer 
et al. [21] 

ASD FPM 
algorithms & 
contrast 
mining 

Including 193 
novel autism 
candidates as 
significant 
associations 
from connected 
286 genes. 

It is a challenge 
for FPM to store 
many 
combinations of 
items as a memory 
requirement 
problem. 

Boutorh 
et al. [22] 

breast 
cancer 

hybrid 
intelligent 
technique 
based on 
(ARM) and 
NN 

Their model has 
achived an 
accuracy up to 
90%. 

The classification 
performance need 
more 
enhancements. 

Narayanan 
et al. [23] 

lung 
cancer 

SVM CAD perform 
Sensitivity with 
82.82%. 

They should 
optimize the 
feature set for 
SVM classification 

Hu et al. 
[24] 

AD SMR The accuracy of 
the results is 
confirmed. 

The GWAS still 
has limitations. 
The strategy is 
based on the 
”common disease” 
hypothesis, which 
misses rare 
variants which 
can play a more 
important role in 
causing diseases. 

Mukherjee 
et al. [25] 

AD ML 
algorithm 

They explained 
that their 
ranked genes 
show significant 
enrichment for 
AD. 

Their studies need 
to focus on 
specific genes and 
pathways that are 
driving disease 
etiology  
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SNPs. These SNPs are regarded as critical biomarkers for the disease. 
A number of common SNPs are obtained as significant SNPs for early 
detection of AD as follows: rs512941, rs2074451, rs429358, 
rs1595816, rs17014396, rs9296559, rs2007-332, and rs204I992.  

● A comparison was provided between our framework and other state- 
of-the-art techniques. Our framework has the highest accuracy 
compared with other techniques.  

● A well-tuned GBT classifier was used to train and test our model in 
the fifth stage of the proposed framework system by hyper-
parameterizing their parameters. 

The remainder of this paper is divided into five sections. Section 2 
introduces the related work, current limitations of recent research, and 
how our proposed framework overcame these limitations. Section 3 
provides the framework of the proposed system in more detail for each 
used technique, briefly explaining all of them. Section 4 discusses the 
results obtained from the proposed system. Section 5 presents a dis-
cussion on the experimental results. Finally, the conclusion and sug-
gestions for future work are presented in Section 6. 

2. Related work 

There is an urgent need to diagnose brain diseases by identifying 
genetic biomarkers to provide accurate detection. So, this section in-
troduces a comprehensive review of genome sequencing analysis for 
discovering complex genes related to genetic brain diseases [14–17]. 
Most of the genetic variations in human genomes are contributed by 
SNPs. Many complex and common diseases are related to SNPs like AD. 
Early diagnosis can be improved by identifying SNP biomarkers at 
different loci for related diseases. Complex diseases investigation of 
genetic variants in the human genome is considered one of the most 
crucial study subjects [6,7]. For example, Mikhail et al. [18] aimed to 
measure the effect of the association at the genome level by studying 
SNPs in AD. Data mining (DM) methods have been tested. The used data 
was taken from the ADNI database. Multiple models were applied, such 
as linear regression (LR), random forest (RF), and multifactor dimen-
sionality reduction (MDR). The results show that using RF and MDR is 
more effective. The MDR model achieved the overall sensitivity in all 
comparisons using only 3 SNPs. The LR yielded high specificity in two 
comparisons (cognitively normal (CN) versus MCI and MCI versus AD). 
At the same time, MDR provided the best AD specificity compared to NC. 
Several significant SNPs associated with MCI and AD have been iden-
tified [18]. 

Abd El Hamid et al. [19] presented a method to detect complex 
diseases related to genetic biomarkers. The goal of their work was to 
determine the important forms of SNP associated with AD. In their work, 
a sequential minimal optimization (SMO) model trained using different 

kernels has been proposed to identify the most important forms of 
polymorphism associated with AD. Significantly AD-related SNPs are 
identified in many genes. Methods of feature selection are essential to 
eliminate some of the unimportant polymorphisms to enhance classifi-
cation performance. They used two feature selection methods to deter-
mine the most significant SNPs. The radial base function kernel (RBF) is 
used to train SMO on the best-selected polymorphisms with a higher 
association with AD disease and better accuracy. They concluded that 
SNPs identified in AD’s early stages are essential biomarkers as they help 
enhance medical diagnostic methods and discover the causes of the 
disease [20]. 

Spencer et al. [21] presented a heritable genotype. Their system 
consists of five stages. The preprocessing is the first step to impute the 
missing SNPs for testing and select the most significant SNPs. The second 
stage is the division of the population. With each subgroup procedure of 
genome-wide, prioritization is used as a primary association. The third 
stage is genome-wide prioritization by returning to the question: how do 
they decide which sets of SNPs to test? The answer to this question is the 
frequent pattern mining (FPM) algorithms utilizing the minimum 
threshold support. The filter will be performed for SNP sets according to 
their prevalence among the affected population. The fourth stage is 
FPM, one of the DM techniques that excel most in feature combinations 
to identify the most common occurrence repeatedly. The data is required 
to be interpreted into binary, with the two referring states in a person, 
which are the presence or absence of the item in FPM, to highlight po-
tential interactions between variants. Finally, the last stage is the 
UICsup, which is a contrast mining utilization. 

Boutorh et al. [22] introduced a hybrid technique that depends on 
association rule mining (ARM) and neural networks (NNs), which used 
an evolutionary algorithm (EA) that was presented to handle the prob-
lem of dimensionality for breast cancer diagnosis. ARM is performed to 
show the most critical features and decrease the dimensionality by 
extracting associations between SNPs, while for efficient classification, 
NN is used. Their method NN-GEARM had been performed on an SNP 
dataset for breast cancer. The developed model achieved accuracy up to 
90%. 

Narayanan et al. [23] presented a study of lung cancer and explored 
the performance of the support vector machine (SVM) based on a wide 
range of features. The results showed that the SVM is mathematically 
more powerful and faster with a wide range of features and is less prone 
to overtraining than conventional classifiers. Besides, they also offer a 
computationally efficient approach to selecting SVM features. Results 
are presented to the publicly available 2016 dataset for lung nodule 
analysis. Their results showed that the SVM classification method, which 
used 10-fold validation, was superior to the fisher linear discrimination 
classifier by 14.8%. 

In order to identify locus and genes associated with AD, Hu et al. [24] 

Fig. 1. The T1-weighted MRI imaging for different stages of AD patient (a) The healthy brain, (b) MCI brain, and (c) AD brain.  
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introduced a summary mendelian randomization (SMR) approach. They 
completed ten experiments and collected efficient results from five ex-
periments using two GWAS datasets and five Expression quantitative 
trait loci (eQTL) datasets. A total of 27 SNPs associated with AD were 
identified. These SNPs correspond to seven genes. They compared re-
sults with known databases to verify the efficiency of their method and 
the accuracy of results. Three of the seven genes were found to be novel 
genes, and six of the seven genes are novel genes in the DisGeNET 
database. 

Mukherjee et al. [25] introduced a method to combine multiple data 
types to extract driven data and analyze results. Then, evidence was 
aggregated to develop the hypothesis that a gene is the genetic driver of 
disease. Their work followed two basic stages: (i) From multiple features 
sets, a general ML framework is presented to discover the few known 
driver genes key characteristics and to identify the similar feature rep-
resentations of the driver genes, and (ii) A scheme for flexible ranking 
with the ability to incorporate external validation into the genome as-
sociation study summary stats form. Also, they demonstrated the utility 
of their ML method over two standardized multi-view datasets. Then, 
they used their method to predict and rank potential drivers of AD. 

Nowadays, people face numerous diseases due to their living habits 
and the conditions of the environment. Therefore, predicting disease at 
an early stage became an important goal. However, accurate prediction 
based on symptoms is too difficult for doctors. The correct prediction of 
disease is the most challenging aim. To overcome this difficulty, using 
ML would be the best choice. Algorithms in ML are easy to implement 
and are flexible enough to deal with complex problems with multiple 
interacting variables. 

As described above, some limitations for the current related work can 
be concluded in the following points. First, the selection of features is the 
most critical step. The commonly used feature selection is filter 
methods. Still, it has many disadvantages: they neglect the interaction 
with the classifier, the features are considered independently for each 
feature, and neglecting feature dependencies. In addition, it is not clear 
how to specify the threshold point for rankings to choose only the 
required features and exclude noise. Second, many studies ignore the 
preprocessing phase and analysis of data for dealing with missing data. 
Third, a poor analysis of gene selection or candidate genes. Finally, the 

main limitation of most models in some ML studies is the overlooking of 
serious overfitting problems. 

So, with the above-mentioned limitations, we developed the pro-
posed framework for the early detection of AD based on SNPs. First, we 
concentrate on the prepossessing phase to deal with missing values, 
which is a focus point. Secondly, wrapper feature selection is used to 
overcome the limitations in filter feature selection to select the essential 
feature that helps the classifier in classification. Unlike filter methods 
which use feature-relevant criteria, the wrapper methods are based on 
the performance of classifiers for obtaining a feature subset. So, the 
accuracy of the classifier increases in the case of using wrapper feature 
selection. Finally, overfitting problems are handled by applying 
different cross-validation techniques on tested data. 

3. The proposed framework 

Variations in the human genome are an essential factor affecting AD 
susceptibility. Consequently, discovering genetic biomarkers for com-
plex diseases, including AD, is the goal of the proposed work. The target 
is to identify the most significant SNPs associated with AD. ML is 
increasingly being applied in healthcare to build models, develop 
practice guidelines or refine guidelines for better medical decision 
making. So, the main objective of the developed framework is to create a 
comprehensive system for early detection of AD based on SNPs analysis. 
Our framework consists of five main stages, as shown in Fig. 2. The first 
stage is dealing with the database. The Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database is used for this study. The second 
stage is the preprocessing stage, which includes the data normalization, 
imputation, and APOE genotyping combination. The third stage is the 
most crucial stage known as feature selection, which helps enhance the 
classifier’s efficiency. In the fourth stage, GBT classifiers’ ML techniques 
are used. We use a GBT classifier to train and test our model. It gives a 
prediction model in the form of an ensemble of weak prediction models, 
which are typically decision trees. Also, we can merge in the fourth 
stage, the accurate prediction of three AD cases, and the AD biomarkers 
are identified in the early stages. 

rs113464261, rs769449, rs73504429, APOE112, rs4844-609, 
rs4732729, rs9331942, rs610932, rs7530069, rs114506-298, 

Fig. 2. The proposed framework for detecting and diagnosing of AD in early stages.  
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rs7929589, and rs611267 were among the SNPs reported to be associ-
ated with AD risk in previous studies. Other SNPs were identified to be 
strongly linked to AD in our work. The SNPs involved rs512941, 
rs2074451, rs15958-16, rs17014396, rs9296559, and rs2007332. These 
findings revealed that GBT could be used to identify AD causal SNPs 
with reasonable accuracy. 

3.1. Dataset 

Data from the ADNI database were obtained in preparation for this 
paper. The ADNI study has been divided into several phases, including 
ADNI-1, ADNI-GO, and ADNI-2. In 2003, the ADNI, led by the principal 
investigator Michael W. Weiner, was released as a public-private part-
nership. In this work, there are two used datasets. ADNI phase 1 data is 
collected from 757 total subjects (214 controls, 366 MCI, and 177 AD 
cases) [26] the direct link to download ADNI. The Human 610- Quad 
BeadChip was used for genotyping the ADNI-1 samples resulting in 620, 
901 SNPs. WSG includes 812 individuals (321 controls, 442 MCI, and 49 
AD cases). WGS samples were genotyped using Illumina Omni 2.5 M, 
resulting in 2,379,855 SNPs considered big data, including domain, 
tested with different phenotypes. 

3.2. Preprocessing 

The data preprocessing stage is an essential step for getting mean-
ingful results. In the proposed framework, the data preprocessing stage 
consists of four steps: outliers handling, missing values handling, 
normalization, and phenotypic information processing. First, median 
imputation is a simple procedure in which the missing entries of the data 
matrix are estimated using the median of the non-missing values of the 
particular case or variable (row average or column average), respec-
tively. Missing values were filled with the median of the observed values 
per variable. As we know, median imputation is suitable when data 
contains outliers. The outliers are data points lying far away from the 
majority of other data points. Outliers in the data that are not normally 
distributed do not require identification. As most statistical tests assume 
that data are normally distributed, outlier identification should precede 
data analysis. An outlier is defined as any point of data that lies below 
1.5 IQRs of the first quartile (Q1) or above the third quartile (Q3) in a 
dataset. Also, IQR is the difference between Q3 and Q1, as shown in Eqs. 
(1) and (2). 

High = (Q3) + 1.5(IQR) (1)  

Low = (Q1) − 1.5(IQR) (2) 

Second, the missing data problem can be handled in three ways, but 
we used the second and third methods to handle data, which gave us the 
best results.  

1. All samples with a missing record are removed before any analysis 
occurs. This is a reasonable approach when the percentage of 
removed samples is low so that a possible bias in the study can be 
discarded. On the other hand, the missing values can be estimated 
from the incomplete measured data. This approach is known as 
imputation and is recommended when the adopted data analysis 
techniques are not designed to work with missing entries. About 80% 
of the ADNI patients have missing records. Despite this, such patients 
are discarded in the vast majority of ADNI studies. We know that 
discarding 80% of the patient’s information is a serious concern. So, 
in our paper, we avoided neglecting missing records by using 
imputation methods [27,28].  

2. Mean imputation is a simple procedure in which the missing entries 
of the data matrix are estimated using the average of the non-missing 
values of the particular case or variable (row average or column 
average) respectively. Missing values are filled with the mean of the 
observed values per variable. So, genes with zero expression are 

replaced with imputation methods for the records containing zero 
expression to keep valuable information. Gene without expression 
value should be handled across all samples, and this step is consid-
ered one of the simplest used preprocessing methods.  

3. Median imputation is a procedure in which the data matrix’s missing 
entries are estimated using the median of the non-missing values of 
the particular case or variable (row average or column average). 
Missing values are filled with the median of the observed values per 
variable [29,30]. The median performs well in the case of outliers 
than mean imputation. 

Third, data normalization is performed by changing the range or 
scale of the data to a range from 0 to 1. The function of data normali-
zation is described by the Min-Max normalization method in Eq. (3), 
where y′ is the value of the feature in the domain of normalized data. In 
contrast, the original value of the data is y before the operation of 
normalization is performed. ymax and ymin refer to the largest and the 
smallest values of all attributes in the data to be normalized, 
respectively. 

y′

=
y − ymin

ymax − ymin
(3) 

Finally, APOE genotyping was combined with the dataset for quan-
tifying the rs7412 and rs429358 SNPs alleles. Also, diagnostic infor-
mation is included to specify phenotypic information for each subject in 
the dataset as healthy control, MCI, and AD. APOE and status are 
specified by two SNPs: rs429358 and rs7412. ADNI-l data contains 
separate APOE genotyping. 

In the ADNI dataset, genetic evaluation of genotyping of APOE is not 
included. At the time of individual registration, APOE SNPs (rs429358 
and rs7412) are genotyped. These two genetic variants define three al-
leles known as ε2, ε3 and ε4 variants. All participants in the ADNI 
database obtained these variants. Two SNP genotypes (rs429358 and 
rs7412) are obtained from three alleles genotype. The dataset is com-
plemented with the APOE genotyping by estimating rs7412 and 
rs429358 SNPs alleles. 

In our paper, we used two versions of the ADNI datasets. The first 
dataset is the WGS ADNI dataset, which includes only CN and AD. On the 
other hand, the second dataset is the ADNI-1 which includes three 
different classes which are CN, MCI, and AD. MCI is an early stage of 
memory loss or other cognitive ability loss, which is considered an early 
sign of AD. Therefore, we used the second dataset to make our diagnosis 
system capable of handling the early signs of the disease. Using the first 
ADNI dataset, 620 and 903 SNPs were obtained after adding APOE 
genotyping. However, the number of SNPs was 2, 379, and 857 after 
adding APOE genotyping in the second dataset. The phenotype repre-
sentation (0, 1, and 2) is used for CN, MCI, and AD. 

3.3. Feature selection 

Selecting a subset of related features is known as feature selection 
(FS), which helps build the model. Basically, there are three methods. 
First, the wrapper methods perform all possible subsets of the dataset. 
Then, a classification algorithm is used to induce features of classifiers in 
each subset. The evaluator uses a search technique, such as random 
search and depth search, to obtain a subset. Second, the filter method 
uses an evaluator and ranker to rank all features in predefined data set 
and arranges attributes. Finally, we delete the lower-ranked feature one 
by one, so the dominant features can be identified [16]. Third, the 
feature selection process in the embedded methods is an integral part of 
the classification model [17]. 

In this study, we tried to reduce feature dimensions and select sig-
nificant features that enhance the performance. So, the main goal of 
using FS is to use only a selected subset of features, which enhances 
rating performance by deleting unimportant features. To identify the 
best subset of features among many features by using the ideal technique 
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is known as FS. Finding the accurate subset of features is a critical goal in 
itself. It is time-consuming to use all datasets of the disease or all features 
subset in the classification process. In addition, some genes may lead to 
AD while the remainder genes do not. Hence, knowing which genes have 
a stronger influence on either or both diseases helps obtain higher ac-
curacy for classification. 

3.3.1. Boruta algorithm 
The Boruta FS algorithm is an RF-based strategy that deletes features 

that have proven less useful than random investigations. The most used 
classification algorithm is the RF because it has less calculation time and 
a free parameter for manual tuning. RF is based on multiple decision 
trees which gather on weak classifiers. The RF-trained model selects all 
importance of all features [31]. As shown in Fig. 3, we present the 
Brouta feature and how it selects the most crucial feature to add to 
classifier [32]. The algorithm of Boruta consists of the following steps: 

1. Expanding the information system by adding copies of all varia-
bles,(x′

t) for a particular input vector,xv to add randomness and to 
eliminate the correlations between duplicate predictors and targets 
(yt), for a group of discrete inputs (Xt ∈ Rn), T and target variable (yt 
∈ R) with several inputs (n) and t = 1, 2, …T.  

2. The added attributes are shuffled to remove their correlations with 
the response.  

3. Running a classifier RF on the expanded information system with the 
target (yt) forecast the duplicated (x′

t) and actual (xt) inputs.  
4. The variance importance measures are used, i.e., permutation 

importance or mean decrease accuracy (MDA) for each input xt and 
respective shadow input (x′

t) overall trees (mtree) by Eq. (4). I(⋅) is the 
indicator function. OOB is derived as Out-of-Bag and it is the pre-
diction error of each of the training samples based on bootstrap ag-
gregation. 

(
yt = f(xt)

)
are predicted values before permuting; and 

(
yt = f(xn

t )
)

is defined as the predicted values after permuting. 

MDA =
1

mtree

∑mtree

m=1

∑
t∈OOBI(yt = f (xt)) −

∑
t∈OOBI(yt = f (xn

t ))

|OOB|
(4)    

5. The calculated Z scores are collected by using Eq. (5). Here, SD is the 
standard deviation of accuracy losses. 

Zscore =
MDA
SD

(5)    

6. The maximum Z score is found between shadow attributes 
(MZSA). Then, a score is assigned for each attribute, which is 
better than MZSA. 

7. For each characteristic of the indeterminate significance of at-
tributes, a two-sided equality test with MZSA is run.  

8. Features of much less significance than MZSA are considered 
”insignificant” and permanently removed from the information 
system. 

9. The features of much higher importance than MZSA are consid-
ered ”important”.  

10. All shadow attributes are removed.  
11. The procedure is repeated from 1 to 10 until all attributes are 

assigned importance, or the algorithm has reached a pre-
determined limit for RF runs. 

3.3.2. Information gain (IG) 
IG method depends on the concept of entropy. In filter strategies, it is 

used as an evaluator of feature relevance that rates features individually, 
and it has the advantage of being quick [33]. IG can identify the needed 
features from each class. It is driven by entropy using Eq. (6). Let D (A1, 
A2, …, An, C), n ⩾ 1, be an n + 1 attribute dataset, where C is an attribute 
of the class. Set m be the number of values of distinct classes. The class 
distribution of entropy in D is represented by Entropy(D), is defined by 
Eq. (6) [34]. 

Entropy(D) =
∑m

i=1
pi ∗ log2 ∗ pi (6)  

where pi is the probability that an arbitrary instance in D belongs to class 
ci. 

3.4. Diagnosis by GBT 

In all studies for classifying diseases and detecting hidden diseases’ 
characteristics, ML is widely used. Also, the overall performance im-
proves by combining different ML techniques. This paper main objective 
is to apply a comprehensive ML-based system for determining genetic 
biomarkers associated with early AD stages. In this section, the proposed 
work is applied for early detection of AD, and a comparison with other 
ML techniques, such as NB, RF, SVM, and KNN, is made. In Fig. 4, a 
Manhattan plot is presented. The most commonly used scatter plot to 
represent data is the Manhattan plot, which is preferable to use with 
many data points, many non-zero amplitudes, and a distribution of 
higher-magnitude values. The plot is usually used in GWAS to show 
significant SNPs. Each point represents a genetic variant. The X-axis 
shows the position on a chromosome, whereas the Y-axis tells how much 
it is associated with a trait. The black and gray colors, which are used in 

Fig. 3. The feature selection process using Boruta technique.  
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the Manhattan plot, are utilized to distinguish the adjacent chromo-
somes from each other. They are used to illustrate the data size and 
boundaries of each chromosome. 

As we know, each human carry 23 chromosomes, which are included 
in the standard ADNI database. Chromosome number 23 can take one of 
the following values: X, Y, XY, and XX. These values are represented in 
the X-axis of the Manhattan plot with the numbers 23, 24, 25, and 26, 
respectively. As shown in Fig. 4, a Manhattan plot is presented for three 
cases: normal, MCI, and AD. CLU, ABCA 7, APOE, BINI, CRI, CD2AP, and 

CD33 are the most highly associated genes with AD, which were iden-
tified as the most significant SNPs. These SNPs are regarded as critical 
biomarkers for the disease. A number of common SNPs are obtained as a 
significant SNPs for early detection of AD as follows: rs512941, 
rs2074451, rs429358, rs1595816, rs17014396, rs-9296559, rs2007332, 
and rs204 I 992. 

3.4.1. Gradient boosting 
Gradient boosting is an ensemble learning method, which iteratively 

Fig. 4. Examples of Manhattan plots: (a) The top plot for normal case, (b) The middle plot for MCI, and (c) The bottom plot for AD.  
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extremely adds basic models. Each additional basic model further re-
duces the gradient of the specified loss (error) function [35]. x refers to 
the feature vector, and y refers to the class label. Given some training 
samples {xi, yi}

N
1=1,the main aim is to obtain a function F*(x) that can 

transfer x into y, like the expected value of a given loss function L(y; F 
(x)) is minimized over the joint distribution of {x, y} values. The loss 
function measures the deviation between the real value y and the pre-
dicted value ̂y. The ”additive” expansion is expressed to approximate the 
function by Eq. (7). 

F∗(x) = arg min
F(x)

Ey,xL(y,F(x)) = arg min
F(x)

Ex[EyL(y,F(x))|x] (7)  

F(x;P) =
∑M

m=1
βmh(x; γm) (8)  

where P = {βm, γm}
M
m=0 the function h(x; γ), known as ’base learner’, is 

always a simple function of x with parameters γ = {γ1, γ2, …, γM}. If F(x) 
is estimated in a nonparametric manner, then the task will become more 
complicated. So, the function optimization problem must therefore be 
mapped to the parameter optimization problem by choosing a model F 
(x; P), which can be set by P. A ”greedy-stagewise” approach is a typical 
parameter optimization method. {βm, γm} is optimized after all the {βi, 
γi}(i = 0, 1, …, m − 1) are optimized. This process can be formulated by 
Eq. (9). Table 2 lists the main steps of the gradient boosting algorithm 
for SNPs. 

(βm, γm) = arg min
β,γ

∑M

i=0
L(yi,Fm− 1(xi)) + βh(xi, γ) (9)  

Fm = Fm− 1 + βmh(x, γm) (10)  

4. Experimental results 

This section consists of two subsections: the evaluation metrics and 
results. The used performance measures are detailed in the evaluation 
metrics subsection. In the results subsection, the proposed system results 
are presented as well as the overall proposed system on the benchmark 
dataset. Then, an overall comparison is presented between the proposed 
system with state-of-the-art ML techniques. In addition, an analytical 
comparison in the results subsection between the proposed system and 
different ML techniques is provided. 

4.1. Evaluation metrics 

The used performance metrics were accuracy (ACC), precision 
(Prec), sensitivity (Sens), the area under the curve (AUC), and Disc 

similarity coefficient (DSC) in the classification stage. ACC is the ratio of 
correctly predicted populations to the total populations. Prec is the ratio 
of correctly predicted positive populations to the total predicted positive 
populations. Sens is the ratio of correctly predicted positive populations 
to the actual positive populations. The receiver operating characteristic 
(ROC) curve is another measure of the performance of an ML classifier 
model. FP is the ratio of false predictive or incorrect positive predictions. 
FN is the ratio of incorrect negative predictions. The ROC is a probability 
curve, while the AUC represents the capability of the model to distin-
guish among classes. The ROC curve is constructed by plotting the true 
positive rate versus the false positive rate. DSC is a statistical tool that 
measures the similarity between two sets of data, as shown in Table 3 
[36–39]. 

5. Results 

This subsection presents a comprehensive framework for early 
detection of AD and detecting the most significant genes based on SNPs 
analysis. In this work, six ML techniques: GBT, NB, RF, SVM with linear 
kernel, SVM with RBF, and KNN are used. Also, the two feature selec-
tions, which are Boruta and IG, are used. First, the dataset is shuffled in 
case of using k-fold cross-validation, so the order of the inputs and 
outputs is entirely random. This step is performed to ensure that the 
inputs are not biased in any way. The division of the dataset into k parts 
of equal sizes is done subsequently. To evaluate the performance of 
classifiers with the implemented models, the k-fold cross-validation is 
applied. The dataset is divided into approximately ten equal groups 
referred to as k = 10. There is a similar percentage for each group of 
people who contracted the disease. Classifier designing depends on 9/10 
of the datasets. The rest of the data was regarded as a test set to evaluate 
the classifier’s performance. For each test group, this operation is then 
repeated ten times [40]. All parts of the proposed system are imple-
mented by using the R language. The proposed system is developed on a 
machine with an i7/2.6 GHz processor and 8 GB RAM. The code is 
uploaded as a supplemental file with this article. 

In Table 4, the hyperparameter optimization of the proposed tech-
niques is presented. Boruta feature selection is a warper feature selec-
tion. It will generate all possible subsets of the dataset. Then, the 
classification algorithm is performed to induce classifiers from the fea-
tures in each subset. As shown in Table 6, Boruta feature selection is 
used with six ML classifiers. New strategies for detecting, treating, and 
preventing the disease can be followed to discover SNPs biomarkers 
associated with AD. For using the ADNI-1 dataset, 26,734 SNPs are 
selected for the feature selection step. The total number of selected SNPs 
is 75,772 in the case of using the WGS dataset. 2-fold and 10-fold cross- 
validation techniques are applied. The results show that GBT is superior 
to NB, RF, SVM with RBF, and KNN with 98% accuracy in case 2-fold 
cross-validation. Also, results show that GBT is superior to the five Table 2 

Gradient boosting algorithm.  

Algorithm: Gradient boosting for SNPs 

Input phase: 
All SNPs set x; 
The iterative steps, M; 
Output phase: 
The function of final classification Fm(x); 
initialize F0(x) = arg min p

∑N
i=1L(yi,p); 

for m = 1 to M do 
calculation of the negative gradient. 

ỹm =
∂L(yi, F(xi))

∂F(xi)

Fit a model. 
αm = arg min γ,β

∑N
i=1 [ỹ − βh(xi; αm)]

2 

select a gradient descent step size as 
Pm = arg min P

∑N
i=1L(yi,Fm− 1(xi))+ ph(xi,α)

Update the estimation of F(x) 
Fm(x) = F(m− 1)(x) + pmh(x;αm) 
End for 
Return Fm(x):  

Table 3 
The used performance evaluation metrics.  

Metrics Description Formula 

accuracy This is a relation between the sum of TP 
and TN divided by the total sum of the 
population 

ACC =

TP + TN
TP + TN + FP + FN 

Sensitivity, 
Recall 

This is a relation between TP divided by 
the total sum of TP, FN 

Sens =
TP

TP + FN 
Specificity This is a relation between TN divided by 

the total sum of TN, FP 
Spec =

TN
TN + FP 

AUC This metric is used to measure the 
average area under ROC 

TPR =
TP

TP + FN 

FPR =
FP

FP + TN 
DSC This is a relation between TP divided by 

the total sum of TP, FN, FP 
DSC =

2 ∗ TP
2 ∗ TP + FP + FN  
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used ML techniques with 99.06% accuracy in the case of 10-fold. Table 5 
represents the top selected SNPs and top candidate genes related to the 
early detection of the disease. 

In Table 7, six classifier ML techniques and IG feature selection are 
used. IG is a filter feature selection. An evaluator and a ranker are used 
to rank all features for a more precise dataset. The attributes are ar-
ranged according to the rank. Then, a comparison between the six 
classifiers is made. The results show that GBT is superior to the other five 
classifiers used in 2-fold and 10-fold cross-validation techniques. Also, 
the results show the ROC curves for five different classifiers, as shown in 
Fig. 5. Finally, the Boruta feature selection is superior to IG. 

Fig. 5 shows the ROC curves for the proposed framework and other 
tested classifiers. The proposed system in cases of using Boruta feature 
selection has a good ROC curve. If the AUC is close or equal to 1, it is a 
good classifier. On the other hand, it means that GBT is superior to other 
classifiers as it manifests the highest values of the ROC curve. As shown 
in Table 6 and Fig. 5, the Boruta feature selection has the highest ac-
curacy within the classifiers. Accordingly, the wrapper feature selection 
is better than the filter feature selection. 

In Table 8, our framework is applied to the WGS dataset. 2-fold and 
10-fold cross-validation techniques and the five measures, which are 
ACC, Spec, Sens, AUC, and DSC, are used to validate the work. The re-
sults show that GBT has an ACC of 99%, Spec is 97.4%, Sens is 99.27%, 
AUC is 0.98, and DSC is 98.08%. These results demonstrate the effec-
tiveness of using the applied ML techniques for early detection or early- 
stage AD detection. Therefore, ML is a good tool that can help doctors 
diagnose the disease early. 

Table 9 shows the comparison of our framework system with other- 
state-of-the-art techniques with respect to time. Also, we used two deep 
learning techniques: multilayer perceptron (MLP) and recurrent neural 
network (RNN), to compare with our proposed framework. MLP and 
RNN take the longest time to train the model. The MLP achieved an 
accuracy of 91.57% with the epoch number = 25 with two hidden 
layers. In the case of increasing the epoch number, the accuracy 
increased, but the overfitting between the training and validation 
increased. Also, RNN is applied with epoch number = 49 with two 
hidden layers and achieved an accuracy of 94.50%. Finally, we can 
conclude that RNN is more efficient than MLP. Also, we can conclude 
that ML and deep learning are more efficient for early detection of AD 
using SNPs. Also, missing data causes a variety of issues, which can be 

summarized in the following points:  

1. A lack of data reduces statistical power, which is the likelihood that 
the test would reject the null hypothesis when it is wrong.  

2. Lost data might lead to bias in a parameter estimate.  
3. It has the potential to impair the representativeness of the samples.  
4. It may complicate the study’s analysis. Each of these distortions can 

affect the validity of the trials and lead to incorrect findings.  
5. Two imputation methods, mean and median, were performed to 

handle the missing data. 

As shown in Tables 6–8, we use mean to handle missing data and 
outliers. In Table 9, we use the median to handle missing data and 
outliers. The median performs more accurately than the mean. 

Our work’s primary concern or novelty is detecting the disease in an 
early stage and identifying the most significant genes and SNPs that 
cause the disease, as shown in Table 10. Our framework has the highest 
accuracy in comparison to other systems. 

6. Discussion 

This paper proposes a system for the early detection of AD and the 
classification process. The proposed framework utilizes two FS tech-
niques with ML. As shown in Tables 6 and 7, the Boruta FS is superior to 
IG because Boruta deals with all features in contrast to IG search for the 
subsets of features. As shown in Tables 6 and 7, results revealed that the 
proposed system, NB, RF, SVM, SVM with RBF, and KNN learning 

Table 4 
The hyperparameters of the used techniques.  

Method Hyperparameter 

Boruta pValue = 0.01, where pValue: is the confidence level. Default value of 
maxRuns = 100, maxRuns is the maximal number of importance source 
runs. Classification algorithm is RF. 

SVM Use two kernels are linear kernel and RBF. method = cross validation with 
number = 2,10 

RF default = 100, where the number of trees in the forest. method = cross 
validation with number = 2,10 

GBT n.trees = 100(number of trees). learning rate = 0.001, Cross validation. 
folds = 2,10  

Table 5 
The top selected SNPs among the top candidate genes.  

CHR GENE SNPs 

8 CLU rs512941 
19 ABCA 7 rs2074451 
19 APOE rs429358 
2 BINI rs1595816 
1 CRI rs2660635 
6 CD2AP rs9296559   

rs17014396 
19 CD33 rs2007332   

rs20n561  

Table 6 
The performance evaluation of our framework system using some state-of-the- 
art classification techniques and Boruta feature selection approach on the 
ADNI-1 dataset.  

Boruta Feature selection 

Cross 
validation 

Metrics GBT NB RF SVM 
with 

SVM 
with 

KNN      

linear RBF  

k ¼ 2 ACC. 98 97.89 97.89 96 96.67 93  
Spec. 98.78 98.5 97.1 97.68 98.65 95  
Sens. 99.02 99.56 99.03 96 97.87 96.43  
AUC .97 0.96 0.961 0.95 0.95 0.923  
DSC 96.54 95.7 95.02 93.84 92.56 90.02 

k ¼ 10 ACC. 99.06 98.1 97.97 95.88 96.98 93  
Spec. 99 98.04 97.15 97.68 98 96  
Sens. 98.45 99.56 99.03 96.26 98.43 94.46  
AUC .98 0.97 0.96 0.94 0.9587 0.928  
DSC 97.32 96.01 94.89 93.67 94.05 92  

Table 7 
The performance evaluation of our framework system using some state-of-the- 
art classification techniques and IG feature selection approach on the ADNI-1 
dataset.  

IG Feature selection 

Cross 
validation 

Metrics GBT NB RF SVM 
with 

SVM 
with 

KNN      

linear RBF  

k ¼ 2 ACC. 94.64 94.2 93 92 92 83  
Spec. 95 96 97.6 97 97 88.53  
Sens. 98.03 97.98 94 95.8 95.8 82  
AUC .937 0.93 .91 0.91 0.91 0.82  
DSC 91.5 90.34 88.05 89.25 90.04 80 

k ¼ 10 ACC. 94.87 94.2 93.5 91.06 92 85  
Spec. 96.90 96 96.7 96 97 88.01  
Sens. 98 97.98 95.88 95 96 90.98  
AUC .94 0.93 0.929 0.91 0.91 0.84  
DSC 91.86 90.34 90.88 90.34 88.45 84.29  
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algorithms scored an overall ACC of 99.06%, 98.1%, 97.97%, 95.88%, 
96.67%, and 93%, respectively in case of using Boruta. In case of using 
IG feature selection, the scored accuracies are as follows: 94.87%, 
94.2%, 93.5%,91.06%,92%, and 85%, respectively. The results show 
that the classification techniques are favorable for detecting AD in the 

early stages. As shown in the results, the GBT is superior to all classifiers. 
From Tables 6 and 7 in the whole-genome approach (AD–NI–1), it 

was observed that there is convergence in the results. These results 
demonstrated the effectiveness of using the applied ML techniques for 
identifying significant SNPs associated with the disease with acceptable 
ACC. In WGS, it was shown that there is convergence in the results 
presented in Fig. 5. The highest classification ACC was achieved by GBT, 
which equals 99%. However, SVM is trained using linear kernel and 
RBF. 

The work of Abd El Hamid et al. [19] holds similarities to the pro-
posed work. The main goal of their work is to determine the most critical 
forms of SNP associated with AD. It decreases the computational 
complexity of ML techniques rather than dealing with all features and 
obtaining a high classification performance. They also use different 
techniques for feature selection to select the best subset features and 
eliminate unimportant and redundant features. 

Shahbaz et al. [42] presented AD classification by using ML tech-
niques to classify AD. The dataset is split into a training dataset with 
70% partition and the remaining percentage testing. However, the 
model cannot be trained with unbalanced and insufficient data for all 
disease classes. In the proposed system, unbalanced data is taken into 
account using k-fold cross-validation. 2 and 10 folds cross-validation 
techniques are used. Cross-validation is a very useful tool as it sup-
ports better use of data. Moreover, it provides much more information 
about the performance of algorithms. The preprocessing phase is also 
another point of great importance. The most significant advantage of 
preprocessing in ML is to improve the generalizability of the model. 

Sherif et al. [6] identified several significant polymorphisms asso-
ciated with AD in the APOE, CR1, CD33, CLU, PICALM, and ABCA7 
genes. In our framework, we identified CLU, ABCA 7, APOE, BINI, CRI, 
CD2AP, and CD33 are the most highly associated SNPs with AD. On the 
other hand, our framework achieved the highest accuracy of 
classification. 

Some of the SNPs were linked with AD risk in studies that have 
previously been discovered, including rs113464261, rs769449, 
rs73504429, APOE112, rs4844609, rs4732729, rs9331942, rs610932, 
rs7530069, rs114506298, rs7929589, and rs611267. Other additional 
SNPs were discovered to be highly related to AD. rs512941, rs2074451, 
rs1595816, rs17014396, rs9296559, and rs2007332 are the SNPs 
involved. 

All studies should take into consideration the preprocessing phase. 
FS is recommended to decrease the number of highly correlated SNPs. 
Highly correlated SNPs make it challenging to select the true disease- 
causing variant. FS can be used in both supervised and unsupervised 
learning. However, this paper concentrates on the problem of supervised 

Fig. 5. The ROC for ML classification techniques.  

Table 8 
The performance evaluation of our framework system using some state-of-the- 
art classification techniques and Boruta feature selection approach on the 
WGS dataset.  

Cross 
validation 

Metrics GBT NB RF SVM 
with 

SVM 
with 

KNN      

linear RBF  

k ¼ 2 ACC. 98.56 98.02 96.9 97 97.8 93.3  
Spec. 97 96.45 95.54 99.87 99.06 96  
Sens. 99.37 99 99.03 94.28 97 91.87  
AUC .977 0.97 0.94 0.94 0.95 0.92  
DSC 98 94.7 93.76 95.1 93 89 

k ¼ 10 ACC. 99 98.87 97 96.91 98 93.26  
Spec. 97.4 99 98 98.05 98 90  
Sens. 99.27 97.05 95.8 94.2 96.95 97.97  
AUC .982 0.98 0.963 0.95 0.96 0.92  
DSC 98.08 93.98 93.98 93 94 91  

Table 9 
The classification accuracy using median imputation and computation time for 
used techniques.  

Methods Accuracy(%) Time(minutes) 

GBT 99.23 66 
NB 98.15 51 
RF 97.99 56 
SVM 95.98 40 
SVM-RBF 97.04 43 
KNN 93.45 80 
RNN 94.50 120 
MLP 91.57 100  

Table 10 
The comparison between the proposed system and others systems.  

Authors Methods Accuracy(%) 

Abd El Hamid et al. [19] SVM 76.70 
Bringas et al. [41] CNN 90.91 
Shahbaz et al. [42] GLM 88.24 
Proposed System GBT 99.23  
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learning (classification), where class labels are predefined in advance. It 
is crucial to decrease the dimensions by methods such as FS because 
high-dimensional feature vectors of microarray data often lead to high 
computational costs. In addition, the risk of overfitting due to the 
extended classification time becomes a high probability of the over-
fitting [2,5]. The dataset should be normalized so the data is mapped in a 
specific range and so there are no missing values of the data to avoid 
misclassification. Then, the feature is selected, and as a result, the main 
genes are obtained. The classification is then performed, and the outputs 
are interpreted to have the required biological information. Accord-
ingly, the feature should only be selected once then the evaluation for 
different classifiers can be performed. The main drawback of filtering 
methods is that they neglect interaction with the classifier, and each 
feature is considered independently. It also neglects features’ de-
pendency on each other. 

In contrast to simple wrappers interacting with the classifier, models 
are characterized by dependency, good classification accuracy, and 
computational cost reduction. The only main drawback is being 
computationally intensive. In conclusion, feature selection has great 
importance in classification for the following reasons: it reduces the 
effects of the curse of dimensionality, helps in model learning, reduces 
the cost of computation, and helps achieve reasonable accuracy. 

7. Conclusion 

The main objective of the recent studies is to identify genetic bio-
markers for complicated diseases, including AD. It is a critical stage for 
identifying genes involved in AD development in molecular diagnostics. 
This study is based on genetic data of ADNI-1 and WGS datasets with 
SNPs tested using many phenotypes. In ADNI-1, results revealed that the 
proposed system scored 99.06%,98.1%, 97.97%, 95.88%, 96.67%, and 
93% for NB, RF, SVM, SVM with RBF, and KNN learning, respectively, in 
case of using Boruta FS. Using information gain FS, the proposed system 
achieved accuracy equals 94.87%, 94.2%, 93.5%,91.06%,92%, and 85% 
for NB, RF, SVM, SVM with RBF, and KNN learning, respectively. In the 
case of WGS data, results showed that the proposed system achieved an 
overall accuracy of 99%, 98.87%, 97%, 96.91%, 98%, and 93.26% for 
NB, RF, SVM, SVM with RBF, and KNN learning, respectively. CLU, 
ABCA 7, APOE, BINI, CRI, CD2AP, and CD33 are the most highly asso-
ciated SNPs with AD, which were identified. These SNPs are regarded as 
critical biomarkers for the disease. Consequently, the proposed system is 
proved to help improve medical diagnosis methods and identify the 
causes of the disease at its earliest stages. The combination of genetic 
data and medical images will be processed for future works to obtain a 
comprehensive early detection system for AD. 
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